当前位置: 首页-> 国内

从显卡王者到AI新贵英伟达凭什么赌赢了大趋势?

发布时间:2023年05月31日 09:15   来源:金融界   发布者:柳暮雪   阅读量:18697   
导读:在最近的人工智能浪潮中,英伟达公司无疑是站在风口浪尖的一家公司,其风头之劲,甚至在最近压过了ChatGPT的东家微软。 而英伟达之所以能独领风骚,一个关键原因在于其广受人工智能领域追捧的芯片产品,即A100芯片及更高一代的H100芯片,目...

在最近的人工智能浪潮中,英伟达公司无疑是站在风口浪尖的一家公司,其风头之劲,甚至在最近压过了ChatGPT的东家微软。

而英伟达之所以能独领风骚,一个关键原因在于其广受人工智能领域追捧的芯片产品,即A100芯片及更高一代的H100芯片,目前这些高端芯片及相应的显卡已是一卡难求。

微软亚洲研究员的高级研究员张弋近期在播客节目中感叹,现在居然到了整个地球都拿不出足够的A100芯片的奇怪场景。一年前,几乎无人料到这一情形。

英伟达2020年推出的A100芯片现在是有价无市,而乘着ChatGPT爆红的H100更是被大公司疯狂抢购。这也让英伟达的业绩一路高歌,股价更是节节高升。

人工智能领域的初创公司Core Weave创始人兼首席执行官Brannin McBee不禁感叹:H100是地球上最稀缺的工程资源之一。这句表态足以让人窥得英伟达现在的盛景。

但世上芯片千千万,为何只有英伟达的芯片成为人工智能领域独一无二的玩家?而英伟达这一向来在显卡称霸的公司,又为何能在深度学习和人工智能领域打下这么大的一片江山?

微软的两次推进

1999年,初露头角的英伟达首次推出了GPU这一概念。在此之前,包括英特尔在内的CPU厂商都坚信图形处理是CPU的活,CPU干的事情越多越好,将图形工作独立到另一附属处理器上的想法十分鸡肋。

当时,图形应用领域中又以搞游戏的日本厂商话语权最重。日系主机的CPU很强,大部分开发工作都集中于CPU之上,因此GPU并没有得到多少市场空间。

转机在于,不服气的微软想要冲击属于日本厂商的行业领先地位,其开发出了Direct X这一标准化的API图形接口,此后大量的图形功能从CPU里面移植出来,转到GPU之上。加上微软另一产品Xbox的推出,其CPU、GPU各司其职的搭配,打破了行业内CPU芯片一家独大的局面。

而英伟达是当年硬件领域唯几跟着微软旗帜前进的公司,并在GPU这条道上一路走到黑。

此后,微软又推动了另一次变革,引入统一渲染技术,即让GPU将图形绘制的顶点计算和之后的渲染两个步骤进行合并。它和显卡领域另一知名公司ATI合作了GPU Xenos,成功应用了这一技术。

无心插柳

统一渲染只是图形应用上的一步,但却给英伟达带来了完全不同的发展路径,可以说是英伟达在后来GPU发展,甚至介入深度学习领域中的起点。

在看到统一渲染架构之后,英伟达果断的把自己从前的GPU架构推倒重来。其GPU流处理器被进行了细致的分组,变成一个个小型流处理器且能单独运行,解决了流处理器此前被绑定无法独立运行而被迫闲置的问题。

这奠定了英伟达后来革命性CUDA架构的出世。由于英伟达的流处理器是很独立且标准的单元,极易控制和调度,这让原本只能串行处理的任务可以被并行处理。这让编程难度大大降低。

与此同时,英伟达的竞争对手ATI却因为早期没有投入硬件架构变革,因为沿用过去的串行设计,沉没成本越来越高,让其革新变得越来越难且越来越贵,最后成功被英伟达挤出显卡市场。

此后,英伟达又在2017年引入了Tensor Core计算单元概念,其专门为深度学习而设计,支持更低精度的运算从而大幅节省了模型算力。

这一专用的加速单元很大程度上排挤了CUDA处理深度学习的空间,但也同时打了英伟达竞争对手一个措手不及,让AI专用芯片也不再吸引人。于是,英伟达GPU机缘巧合地成为AI领域最被认可的硬件。

赌赢趋势

2003年,”快速迭代,不断试错“的英伟达搞了一个不受欢迎的项目。其开发了一款Soc芯片,将基于ARM架构的CPU与自己的GPU集成在一起。

自Soc芯片之后,英伟达每隔几年都发布一些芯片。2015年,其推出了Tegra K1,使用Arm公版CPU和自己的开普勒架构GPU,但由于功耗和发热皆不尽人意,对大部分使用者来说很是折磨。

但业内人士却对这些挫折十分认可。一位投资人曾指出,英伟达在守住GPU基本盘的同时,不断在新的领域伸出触角,并让无数买它显卡的人陪它分摊成本。

他还称赞道,虽然英伟达的很多东西,如CUDA在一段时间内看不到落地的场景,但在试错过程中它建立起了完整的生态,并在一股新风向袭来的时候,成功站上了风口。

这也是英伟达GPU打败其他芯片,成功吃下AI红利的一个原因。一方面,GPU的通用性更佳,比专用芯片更适应变化;另一方面,英伟达拥有完整生态,让它的GPU成为当下最合适的那个选择。

事实上,当AI一瞬间爆发,行业内的企业无奈发现,GPU是简单高效运行生成式AI模型的最好选择,一个本用来玩游戏的GPU不太可能切换去跑AI程序,目前只有英伟达的GPU能够做到运行AI模型。

而英伟达的故事里还有一个小彩蛋。

2016年,英伟达发布了第一款深度学习的超级计算机DXG-1。令人称道的是,英伟达首席执行官黄仁勋当年仿佛能预知未来,将第一台DXG-1捐给了当时还是初创企业的OpenAI。

2022年,OpenAI带着横空出世的ChatGPT引爆了人工智能概念,也带动英伟达成为芯片领域中的香饽饽。这一段缘分不得不令人感慨,但又像是黄仁勋远见之下的善果。

~全文结束~

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

分享到微信